
S

Author: Teledyne SP Devices

SPD Document Number: 16-1830

Security Class: Open

Revision: PD

Release Date: 2017-11-08

ADQ14 Development Kit

Documentation

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 2(of 35)
2018-01-18

Table of Contents
1 Tools..4

2 Overview...5

2.1 High-level block overview..5

3 How to use the Development Kit...6

3.1 Extracting the DevKit files..6

3.2 Open the Development Kit..6

3.3 Set up the project..7

3.4 Build the firmware bitfile...8

3.5 Working with your design..9

3.6 Typical DevKit design flow...9

4 Basic design with the Development Kit...10

4.1 Dataflow chart...10

4.2 Control bus..10

4.2.1 Accessing the block control bus from the ADQAPI..10

4.3 Data stream bus...11

4.3.1 Concept of parallel samples (parallel design)..11

4.3.2 Example of the bus splitter macro usage...12

4.3.3 Trigger in User Logic 1...12

4.3.4 Commonly used bus splitter functions..14

4.3.5 GPIO (available in User Logic 2 only)...14

4.4 Handling of the trigger vector...14

5 Advanced design with the development kit..16

5.1 Using DRAM...16

5.1.1 The inner design of the Multiport DRAM..16

5.1.2 User interface..19

5.1.3 Parameter READ_AFULL_DEPTH..20

5.1.4 Other useful DRAM info..21

5.2 Using GPIO on daughterboard...23

5.2.1 Description..23

5.2.2 Usage...23

5.2.3 Connectors..24

5.3 Using the record bits...24

5.3.1 Extracting the record bits..25

5.3.2 Inserting the record bits..26

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 3(of 35)
2018-01-185.4 Using sample-skipped data..26

5.4.1 Example for an -A unit (2 parallel samples)...26

5.5 Debugging on real hardware with Vivado Debug Core..27

5.6 Using VHDL instead of Verilog...32

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 4(of 35)
2018-01-18

1 Tools
• A license for the ADQ14 Development Kit, purchased from SP Devices.

• A license of the Xilinx Design Tools. For current version of the ADQ14 Development Kit
a license of Vivado 2015.2 is required. (see table below)

• The Vivado license includes simulation tools for mixed VHDL/Verilog code.
Minimum required is Design Edition.
(WebPack does not support the ADQ boards.)
(Xilinx ISE cannot be used for ADQ14.)

• To create custom logic you need skills in Verilog or VHDL design.

Development Kit Revision Tool version required

> r21902 Vivado 2015.2

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 5(of 35)
2018-01-18

2 Overview
2.1 High-level block overview

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 6(of 35)
2018-01-18

3 How to use the Development Kit
3.1 Extracting the DevKit files
 Extracting the devkit .zip archive yields the folders seen below

The source files available for editing are user_logic1.v , user_logic2.v and regfile.v, and are
found in the source folder. Do not modify any other files.

Pre-compiled code is placed in the edif directory

The ip directory contains Vivado IP cores

The scripts used to setup the project in Vivado and run the build process are placed in the
implementation/scripts folder

NOTE: Extraction of the archive must be performed in a directory where you as a user have
permission to write and change files. (For instance not under ”Program Files/SP Devices”)

3.2 Open the Development Kit
 Start Vivado (it can be found under Xilinx Design Tools in the start menu after installation)

 In the Vivado menu select “Tools / Run Tcl Script”

Select the file: devkit\implementation\scripts\devkit.tcl. The Tcl Console will show the message
below.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 7(of 35)
2018-01-18

3.3 Set up the project
 Go to the TCL Console command field and type: devkit_setup and press Return.

This will create the Vivado project. The initial setup will take a moment since parts of the
design will be compiled.

When the execution has finished a project has been created.

Note: The user logic modules must be compiled into netlists. This is done by the provided
scripts. Using the normal flow in Vivado instead of the provided scripts will not work.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 8(of 35)
2018-01-18

3.4 Build the firmware bitfile
Go to the TCL Console command field and type: devkit_build and press Return.

Dependent on your computer specifications and the complexity of the total logic (pre-compiled
+ your user logic) this may take between 1 hour to 10 hours.

When the execution has finished, an .mcs file that can be flashed to the digitizer have been
created in the implementation folder.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 9(of 35)
2018-01-18You can manually rebuild the netlist for the user logic modules with the tcl commands:

devkit_synth_ul 1
devkit_synth_ul 2

Then use the Vivado GUI to generate the bitstream. To convert the bitstream to an .mcs file use
the tcl command:

devkit_mcs

3.5 Working with your design
 You can use the command below to set your user logic as top module. This is useful when
using the Vivado RTL analysis tools.

devkit_set_top_ul 1
devkit_set_top_ul 2

You can go back to the standard devkit top module with the command:
devkit_set_top

IMPORTANT: Avoid doing this manually. Other important parameters are also set by these
commands.

3.6 Typical DevKit design flow
1. Set up the DevKit Project as described in section 3.3

2. Modify or insert new verilog code into user_logic1.v or user_logic2.v. This can be
subdivided into 4 steps:

a) Extract data, trigger and data_valid signals using the extract macros.

b) Process the extracted data and signals according to your requirements.

c) Insert the processed data, trigger and data_valid signals back into the data path.

d) Set the correct BUS_PIPELINE delay to keep bus signals which were not manually
inserted, in sync.

3. Generate the netlist for the modified code by running:

4. devkit_synth_ul 1 and/or
devkit_synth_ul 2

5. Generate a .bit file by clicking on “Generate Bitstream” in Vivado GUI. Alternatively
run: devkit_build in Vivado tcl console.

6. Generate a .mcs file to load into the onboard flash of the ADQ14 by running:
devkit_mcs in Vivado tcl console. The generated .mcs file can be found under:

7. FPGA\implementation\xilinx\logfiles

8. Load the newly generated custom firmware file (.mcs) into the ADQ14 by using the
ADQUpdater application, available via the SDK

9. Test the custom firmware using the ADQAPI library available via the SDK, using one of
the many software examples as a basis for your software application

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 10(of 35)
2018-01-184 Basic design with the Development Kit

4.1 Dataflow chart

4.2 Control bus
Each User Logic modules has its own register control bus.

IMPORTANT: The first four 32-bit words are reserved for internal functions and cannot be used.

The example code implements a register bank. The bus can also be used to interface to block
RAMs, FIFOs, or other custom blocks.

4.2.1 Accessing the block control bus from the ADQAPI
ADQAPI commands

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 11(of 35)
2018-01-18Access single register:

ReadUserRegister()
WriteUserRegister()

Write range of addresses:
ReadBlockUserRegister()
WriteBlockUserRegister()

For details see: ADQAPI_ReferenceGuide.pdf (Provided by the SDK installer)

4.3 Data stream bus
To keep information consistent through the digitizer system, the ADC data, trigger data and
time stamp are provided as a combined stream bus. Therefore it is important that all these
signals have the same latency through the User Logic designs.

There is a bus splitter macro in the user logic code that helps you to do this in a simple manner
(see next section).

4.3.1 Concept of parallel samples (parallel design)
The FPGA can not be clocked at the sampling rate of the digitizer channels. A clock frequency
on the FPGA of 200-300MHz is a good choice, to avoid timing issues. For instance for a -C unit
with a sampling rate of 1GS/s this means we need to have 4 parallel samples for each clock.
The user logic will receive 4 parallel samples and will need to output 4 parallel sample on each
clock at 250MHz. This clock signal is denoted as an input port named “s_axis_aclk” alt.
m_axis_aclk in the user_logic module and should be used to clock any custom data
manipulation block.

Note: The clock frequency is 250MHz for the data stream. Either s_axis_aclk or m_axis_aclk
can be used.
ADQ14-2X: 2 Channels, 2GSPs (8 parallel samples per cycle)
ADQ14-1X: 1 Channels, 2GSPs (8 parallel samples per cycle)
ADQ14-4C: 4 Channels 1 GSPs (4 parallel samples per cycle)

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 12(of 35)
2018-01-18ADQ14-2C: 2 Channels, 1 GSPs (4 parallel samples per cycle)

ADQ14-4A: 4 Channels, 500 MSPs (2 parallel samples per cycle)
ADQ14-2A: 2 Channels, 500 MSPs (2 parallel samples per cycle)

4.3.2 Example of the bus splitter macro usage.
ADC data from channel A is extracted from the bus and delayed one clock cycle.

The signals from the bus that are not used are automatically passed through the module, with
a delay equal to the “BUS_PIPELINE” parameter, which is set to 1 to match the data delay.

Note: Setting BUS_PIPELINE value correctly is critical to maintain valid data in the digitizer
framework

4.3.3 Raw data sample order on Host PC
Normally when using one of the available standard acquisition modes of the ADQ14, it is not
necessary for the user to know about the sample order of the data arriving to the PC because
most of the sorting and parsing work is taken care of by the API internally and the user is
presented with the requested data in an easy-to-process format. However if one wants to
implement a more customized acquisition with a customized sorting and parsing procedure on
the software side, it is vital to understand how the data samples are ordered when it arrives to
the PC. For a more hands-on detail, please study the included streaming devkit example with
it’s accommodating software. Here are some of the important points.

Raw data is streamed to the PC and stored in so called “transfer buffers”. These transfer buffers
can be setup by using the software API command “SetTransferBuffers()”. Data is written to
these buffers in a circular manner. When all available buffers are filled, the transmission will
halt, waiting for free buffers to continue. It is crucial that filled buffers are read out in time

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 13(of 35)
2018-01-18before this happens, otherwise buffer overflow will occur. Once data for a buffer has been read

by the user, it will be put back into the queue to receive new data. The amount of buffers and
the size of each buffer will have an impact on the data transfer speed from the ADQ14 to the
host PC. Depending on the application, choosing a correct buffer size will save a lot of tedious
parsing and sorting. Large transfer buffers will consume a lot contiguous space in the host’s
memory and might fail to be allocated due to RAM fragmentation over time (PC restart might
help). Small transfer buffer size is easier to allocate but transfer speed might suffer because of
the processing time overhead associated with each buffer. Once all the buffers are filled up but
none has been read out, the data transfer will stall and hardware buffers on the FPGA side will
start to fill up. When both the software and hardware buffers are filled, streaming overflow will
occur, in which case the data will be corrupted. To avoid this, it is prudent to adapt the transfer
buffer size, and amount, for the target application so that the buffer read out speed matches
the write speed.

The software transfer buffers does not have any knowledge about what data it is receiving from
the ADQ14 and it does not care. On the FPGA side, it is the data_valid signal for each channel
data that will decide which data cycle will be transferred to the PC. However it is the software
API that will have the last word on this. Even if data_valid for a channel is held high, it is still
possible to prevent data for a certain channel from being transferred by masking out that
channel using the API command SetStreamConfig(). Let's look at a simple illustration where we
want to send 4096x4 bytes of data from a 4 channels ADQ14 to a PC. On the FPGA side, the
channel data buses and corresponding data_valid signal should look like this:

Once these data arrive to the host PC they will be arranged in a stream like this:

Because data from different channel is muxed into a single stream this way on the Host side,
data belonging to one channel will be spread across different transfer buffers and must be
separated and then stitched together before it can be interpreted properly. Choosing an
appropriate transfer buffer size (using "SetTransferBuffer()") will make this parsing procedure
less painful depending on your application. Let’s look at an example when using 3 transfer
buffers, each with the arbitrary size of 1365 bytes.

S

FPGA Data Transfer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

clk

data_valid_a

data_a 4096 bytes data_a

data_valid_b

data_b 4096 bytes data_b

data_valid_c

data_c 4096 bytes data_c

data_valid_d

data_d 4096 bytes data_d

Raw data arriving to host PC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

data_stream 1024 bytes a 1024 bytes b 1024 bytes c 1024 bytes d 1024 bytes a 1024 bytes b 1024 bytes c 1024 bytes d 1024 bytes a

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 14(of 35)
2018-01-18

Iterating through the buffers with such size to separate the data into each channel is difficult
because the pattern of the channel data in each buffer is not constant. It is therefore
recommended to use buffer size in multiple of 1024 bytes in order to effectively parse the raw
streamed data into separate channels. This depends however on the application and what
needs to be done with the received data. There might exist cases where other buffer size
would be more suitable.

4.3.4 Streaming Finite Amount Of Data to Host
Streaming a finite amount of data from the digitizer to the host PC has one important
limitation. If the amount of data is not enough to fill the 1024 bytes slot for ANY channel, data
transfer will halt for all channels until that slot of 1024 bytes is filled. For example if we have
setup a few transfer buffer with the size of 2048 bytes and the user_logic module on the FPGA
is producing the following amount of data.

As can be seen in the figure above, data for channel A is a little less than the other channels.
The first two transfer buffer on the host side will look like this.

S

Raw data in transfer buffer with arbitary size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

data_stream 1024 bytes a 1024 bytes b 1024 bytes c 1024 bytes d 1024 bytes a 1024 bytes b

transfer_buffers Buffer 0 (1365 bytes) Buffer 1 (1365 bytes) Buffer 2 (1365 bytes) Buffer 0 (1365 bytes)

1024 bytes channel a + 341 bytes channel b 683 bytes channel b + 682 bytes channel c 342 bytes channel c + 1023 bytes channel d 1 byte channel d + 1024 bytes channel a + 340 bytes channel b

a b c d e

f g h i j

Transfer buffer with 1024 bytes modulo size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

data_stream 1024 bytes a 1024 bytes b 1024 bytes c 1024 bytes d 1024 bytes a 1024 bytes b

transfer_buffers Buffer 0 (2048 bytes) Buffer 1 (2048 bytes) Buffer 2 (2048 bytes)

1024 bytes channel a + 1024 bytes channel b 1024 bytes channel c + 1024 bytes channel d 1024 bytes channel a + 1024 bytes channel b

a b c d

f g h i

Example of different data amount for different channel

0 1 2 3 4 5 6 7 8 9 10 11 12 13

clk

data_valid_a

data_a 1790 bytes data_a

data_valid_b

data_b 2048 bytes data_b

data_valid_c

data_c 2048 bytes data_c

data_valid_d

data_d 2048 bytes data_d

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 15(of 35)
2018-01-18

Even though the FPGA is producing enough data to fill the third transfer buffer on the software
side, the third buffer would still be empty because on the FPGA side, the transfer queue looks
like this:

It does not matter which channel is missing some data to fill the 1024 bytes slot. When ANY
channel cannot fill its slot of 1024 byte, transfer will halt and the hardware buffers will start to
fill up until they overflows.

The simplest way to resolve this is to flush out the data by keeping the data_valid signal for
channel A high for one more cycle so that the third and fourth transfer buffer can be filled. This
means that the last 256 bytes of channel A will contain garbage data. But this data can easily be
ignored on the software side when presenting the data to the user.

This design was mainly build to best suit the included standard acquisition modes and any
other custom acquisition build by the user must adhere to this setup since it is not possible to
construct a design that can anticipate every possible customization.

4.3.5 Trigger in User Logic 1
Each data channel in the bus has an associated trigger vector that can contain external trigger,
software trigger, internal trigger etc.

The trigger mode selection (software, internal, external, etc) only decides which data is
inserted into the trigger vector at the start of the data path, before the user logic modules. If
you want to create your own trigger, you can simply ignore the incoming trigger vector to the

S

The first two transfer buffers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

data_stream 1024 bytes a 1024 bytes b 1024 bytes c 1024 bytes d

transfer_buffers Buffer 0 (2048 bytes) Buffer 1 (2048 bytes)

1024 bytes channel a + 1024 bytes channel b 1024 bytes channel c + 1024 bytes channel d

a b c d

f g h

1024 bytes slot for channel a not filled. Transfer stuck in queue.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

clk

data_valid_a

data_a transferred 768 bytes data_a

data_valid_b

data_b transferred 1024 bytes data_b

data_valid_c

data_c transferred 1024 bytes data_c

data_valid_d

data_d transferred 1024 bytes data_d

transferred data data in queued on FPGA

a b c

id e f

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 16(of 35)
2018-01-18user logic, and create a new trigger vector of your own which you insert onto the outbound

data bus.

The trigger mux in the User Logic module selects the trigger type used:

Incoming bus trigger
Level trigger

The user can modify the data that is sent to the level trigger in User Logic 1

When User Logic bypassed, data from User Logic 1 is ignored both for the level trigger and the
channel data.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 17(of 35)
2018-01-184.3.6 Commonly used bus splitter functions

<c> = [a,b] or [a,b,c,d] depending on product
<n> = 0-3,or 0-7, depending on product

Note:
ADQ14-2X: 2 Channels, 2GSps (8 parallel samples per cycle)
ADQ14-1X: 1 Channels, 2GSPs (8 parallel samples per cycle)
ADQ14-4C: 4 Channels 1 GSPs (4 parallel samples per cycle)
ADQ14-2C: 2 Channels, 1 GSPs (4 parallel samples per cycle)
ADQ14-4A: 4 Channels, 500 MSPs (2 parallel samples per cycle)
ADQ14-2A: 2 Channels, 500 MSPs (2 parallel samples per cycle)

4.3.7 GPIO (available in User Logic 2 only)

By default, the GPIO is connected to the CPU (i.e accessible over the API)

4.4 Handling of the trigger vector
Each data channel has an associated trigger vector in the bus. The trigger information can be
extracted by using the macro shown in the example below.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 18(of 35)
2018-01-18

The trigger vector in User Logic 2 has 16 additional fractional bits compared to User Logic 1.
This is to allow maintaining the full trigger precision when using sample skip or decimation.

When using the standard firmware, the trigger vectors for all channels are identical. Other
firmware packages such as FWPD will let the channels operate with individual triggering (such
as individual level trigger).

The trigger data is inserted prior to the user logic module and is selected from a number of
trigger sources via the SetTriggerMode API command. If you want to create your own trigger,
you can simply ignore the incoming trigger vector to the user logic, and create a new trigger
vector of your own which you insert onto the outbound data bus.

Trigger vector bus width:

User Logic 1 = 7 bits
User Logic 2 = 23 bits

The trigger vector is divided into 3 fields. An example is shown below for the User Logic 2
trigger vector:

The value-field should be interpreted as a fixed-point fractional number in units of samples in
the current sample rate.

The fractional point is different for different ADQ14 products (Table for User Logic 2):

As an example, for the ADQ14-2X user logic 1 module, the trigger vector should be interpreted
like this:

assign event = ch_trig_vector_in[6];
assign edge = ch_trig_vector_in[5];
assign whole_samples = ch_trig_vector_in[4:2];
assign fract_samples = ch_trig_vector_in[1:0];

The event bit indicates whether there was a trigger event (1) or not (0) during the current clock
cycle. The edge bit is used to indicate rising(1)/falling(0) edge. It does not affect anything in the
data acquisition. The remaining bits are a fixed-point fractional number, in units of ADC sample
periods, that points to where the trigger occurred among the parallel samples of the current

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 19(of 35)
2018-01-18clock cycle. The number 5.25 (10101 in binary) would for example mean that the trigger came

a quarter sample period after the fifth ADC sample.

In user logic 2, the trigger vector has 16 additional fractional bits added to the end of the
trigger vector, in order to be able to maintain trigger precision when using features such as
sample skip and similar data reduction strategies. Apart from that, it works the same way as in
user logic 1.

If you are using multirecord data collection, it is required that the trigger vectors for all
channels are identical. If you are using triggered streaming, they can be made different.

5 Advanced design with the development kit
5.1 Using DRAM

5.1.1 The inner design of the Multiport DRAM
Introduction

Multiport is essentially a multiple port interface towards a single DRAM controller. It handles
port arbitration, DRAM command generation and allows both read and write ports.

A block diagram view of multiport with 3 instantiated writer ports and 2 instantiated reader
ports can be seen below. The user logic 2 in ADQ14 has access to one writer port and one
reader port, while the framework design at the same time also has a number of reader and
writer ports.

The writer ports and reader ports respectively, share the same structure and have the same
functionality. The only difference is how they are prioritized in their access to the DRAM.

Ports
Since multiport handles the port arbitration, it is also the master on both the reader port and
writer port buses, i.e. it signals “I will read data this clock cycle” on the writer port, and “I am
outputting valid data this clock cycle” on the reader port.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 20(of 35)
2018-01-18The memory space which is to be read from / written to is selected by the device

communicating with the port, via address pointers and a strobe signal.

The reset input aborts any ongoing read or write operation, stopping the generation of DRAM
commands and clearing the stored addresses.

There are no FIFOs in the actual ports, they are effectively just interfacing between the FIFO in
the device using the port, and the command/data FIFOs.

Something that should be noted is that the ports themselves run on the global memory clock
in the FPGA, but the DRAM controller runs on its own DRAM clock. These run at the same clock
rate but are separate clock networks. For write operations, the clock domain crossing happens
in the command/data FIFOs. For read operations, there is no such FIFO in multiport, however,
and the data is instead just clocked directly to the memory clock domain.

Both reader and writer ports support address wrapping. In the case of the writer port, the
write address will keep wrapping from last to first address, until the write_last signal is
asserted.

In the reader port there are two sets of addresses: high and low set up a memory area to wrap
around, while first and last set up the start address and end address of the readout. Since the
digitizers often use circular writing to memory areas until a trigger occurs, the typical use case
is for the reader port is to set high/low to the edges of the circular buffer, set first to wherever
the trigger

Command mux and port arbitration
The command mux selects which port is allowed to input commands to the command FIFO.
The mux contains state machines called “select” and “select_hot”, which are actually duplicates
of each other but with different encoding (integer coded and one-hot coded respectively) in
order to improve timing. These are used to select which port is current enabled.

There is a strict prioritization between ports (see the ordering in the overview block diagram).
As soon as a higher priority port signals “not empty”, the “select” register changes value and
the mux starts accepting command from the new port starting with the next clock cycle.

Command / data FIFO
Data is read from / written to the DRAM using commands. The current multiport module only
supports memory controller setups which produce one clock cycle of data per command.

As an example, the ADQ14 memory architecture has a 64-bit external bus, with a 1:8 memory
controller giving 512 bits internally. The burst setting is also 1:8, resulting in a burst of eight 64-
bit accesses for each command, giving a single cycle of internal 512-bit data.

The ports automatically generate read/write commands across the space which the
communicating device requested via strobe and address inputs.

TAG fifo

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 21(of 35)
2018-01-18A write that is sent to the writer FIFO has no need to keep track of which port sent the write. A

read however, needs to know where to send its results. That is what the tag FIFO is used for. At
the same time as a command is sent to the command FIFO, a read port address is also entered
into the tag FIFO. After the command has been sent, and the data returned from the DRAM,
the tag is used to determine which port to send the read data to.

The tag FIFO also passes two additional bits, firstdata and lastdata, which are generated by the
reader port to signal which data words are first and last in a read operation.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 22(of 35)
2018-01-185.1.2 User interface

Reader port (user interface in user_logic_2)

Signal name Direction Description

read_reset_i Input Reset signal

read_strobe_i Input Strobe in order to start a read operation

read_abort_i Input Assert to abort read operation (stop generating read commands)

read_first_addr_i Input First address of read operation

read_last_addr_i Input Last address of read operation

read_low_addr_i Input Low address of read operation (memory wrap)

read_high_addr_i Input High address of read operation (memory wrap)

read_sent_o Output Asserted when the port has finished generating read command, signaling
that a new read operation can be strobed. Note that while all read
commands have been sent, they may not have been processed yet (which
is what the read_done_o output is used to indicate).

read_done_o Output Asserted when read operation is completed, all commands have been
applied to the DRAM controller and all data has been output.

read_data_o Output Data port (512 bits)

read_firstdata_o Output Asserted during the first data word output (read_data_o) of a read
operation

read_lastdata_o Output Asserted during the last data word output (read_data_o) of a read
operation

read_wr_o Output Output valid signal for read_data_o

read_afull_i Input Almost full flag, assert to throttle the data output of the port (see also
READ_AFULL_DEPTH)

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 23(of 35)
2018-01-18Writer port (user interface in user_logic_2)

Signal name Direction Description

write_reset_i Input Reset signal

write_strobe_i Input Assert to strobe address information for write operation

write_first_addr_i Input First address for write operation (32 bits)

write_last_addr_i Input Last address for write operation (wraps on this address) (32 bits)

write_done_o Output Asserted when write operation is done

write_data_i Input Data port (512 bits)

write_last_i Input Stops the write operation (assert synchronously with the last data word to
be written). If this is not asserted, the write operation will wrap over the
first/last address space.

write_empty_i Input Empty signal, assert to stop the port from reading data

write_read_o Output Read signal, write_data_i will be captured and written when this is
asserted

5.1.3 Parameter READ_AFULL_DEPTH
Each reader port is instantiated in multiport top with a parameter called READ_AFULL_DEPTH.
The data chain for reading from DRAM looks like below, if we simplify away the other ports:

The data reader port will send out bursts of read commands into the command FIFO, and will
not stop until the module which is connected to the read port sends its ”almost full” signal.
However, since the command FIFO can contain several commands, this means that even
though the read port stops sending more commands when the ”almost full” is received, there
will still be some extra writes done depending on how many commands were already in the
writer FIFO when the full signal was received. There is also a FIFO and pipelining in the DRAM +
DRAM controller which can hold some pending commands.

The READ_AFULL_DEPTH sets how many read commands the port is allowed to have in the
writer FIFO and DRAM loop at any given time, before pausing and waiting for data to come
back. This parameter should therefore be set to less than the remaining amount of rows in the
receiving module FIFO when almost full is sent

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 24(of 35)
2018-01-18On ADQ14 READ_AFULL_DEPTH is 128. It is recommended to add at least 8 to this for the

almost full limit to account for delay in the DRAM controller.

5.1.4 Other useful DRAM info
The DRAM chips contain a number of banks. Each bank has a number of rows, which in turn
has a number of columns. When data is to be accessed, the desired row is first cached in a row
register (in the chip), and the desired column is then read out to the DRAM controller.

Whenever a new row is accessed, the old row must be written back to memory, and the new
one read out. This is called a row switch, and is fairly costly in terms of latency.

The DRAM chips have a number of banks, typically eight:

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 25(of 35)
2018-01-18

Each bank has its own row cache register. It is therefore much faster to perform a bank switch
than it is to perform a row switch.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 26(of 35)
2018-01-185.2 Using GPIO on daughterboard

5.2.1 Description
The ADQ14 daughterboard has 12 GPIO pins (see attached pinout below), which are connected
to the 12 LSBs of gpio_in/out. Each of these signals also has a buffer on the daughterboard. The
4 MSBs of gpio_out_o controls the direction of these buffers for the 4 LSBs of gpio_out_o. The
rest (bit 4 to 11) is controlled using I2C communication. This should not be confused with the
gpio_dir_o signal which controls the tristate buffers on the FPGA.

In conclusion:

• gpio_in/out [0:11] is connected to GPIO_EXT0, ..., GPIO_EXT11
• gpio_out[12:15] controls the direction of the daughterboard buffers for
gpio_in/out[0:3] signals
• The direction of the daughterboard buffers for gpio_in/out[4:11] is set using I2C
commands (SetDirectionGPIOPort from the SDK)
• gpio_dir_o[0:15] controls the FPGA tristate buffer for gpio_in/out [0:15]

5.2.2 Usage
Recommended is using the SDK commands (SetDirectionGPIOPort) to control the GPIO
input/output state, and bypassing the direction signals, i.e. let gpio_dir_o = gpio_dir_i and
gpio_out_o[15:12] = gpio_out_i[15:12]. This is assuming you don't need to set the direction
directly from the devkit. Otherwise, you have to ensure that the direction match for the FPGA
and daughterboard buffers.

The gpio_ctrl[1] is an active low enable signal for the 3.3 V supply (pin 20 and 21) on the
connector and gpio_ctrl[0] is the active low short circuit fault status bit for the power switch.
The other gpio_ctrl bits are not connected to anything. It is recommended to control these
using the API function EnableGPIOSupplyOutput and leave all gpio_ctrl signals connected as
they are in the devkit.

Below is a screenshot of the GPIO connector. The voltage level of all GPIO pins is 3.3V

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 27(of 35)
2018-01-18

The 3.3 V supply allows for a maximum current of 0.5 A. The “SPARE” pins are not connected to
anything.

5.2.3 Connectors
The connector on the board is the Hirose ST60-24P(30):

A mating cable connector is ST40X-24S-CV(30) from HiRose.

https://www.hirose.com/product/en/products/ST/ST60-24P(30)/

It is possible to order a 1m cable assembly with a ST40X-24S-CV(30) connector in each end
from SP Devices to be used for the GPIO usage.

5.3 Using the record bits
The aim of this section is to explain the concept and usage of the record bits. The record bits
exist on the data bus following the acquisition module. Therefore, this section is only relevant
for user logic 2. The record bits are only used for triggered streaming. For raw streaming, only
the `data_valid` signal is used to control the data.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 28(of 35)
2018-01-18

The data valid signal is used to indicate that the data for the current cycle is valid ADC data.
This means the data valid signal will be constant high unless sample skip is used. Therefore, the
data valid signal can not be used to mark or indicate records.

Instead, records are marked with the record bits. The record bits are a 2-bit vector that can be
extracted from the bus.

• The first bit of the `record_bits_in` vector indicates the start of the record. The cycle
where the first bit is asserted is also included in the record.

• The second bit of the `record_bits_in` vector indicates the end of the record. The cycle
where the second bit is asserted is also included in the record.

5.3.1 Extracting the record bits
The record bits can be extracted from the bus with the bus macro

extract_record_bits_X

where X is the channel. For example to extract the record bits from channel A

wire [1:0] record_bits_in;
record_bits_in = extract_record_bits_a(DONT_CARE);

For example, a signal, `valid_record`, which is 1 during a record and 0 therwise, may be
obtained by

reg valid_record_reg;
wire valid_record;
always@(posedge CLK_SIGNAL) begin
 if(record_bits_in[1]) begin
 valid_record_reg <= 1'b0;
 end
 else if(record_bits_in[0]) begin
 valid_record_reg <= 1'b1;
 end
end

assign valid_record = record_bits_in[0] | valid_record_reg;

S

Figure 1: Simplified signal diagram for the record bits. Data valid is asserted when the device
powers on, and is only de-asserted if sample skip ordecimation is used.

Record : Record 0 : : Record 1 : etc..
 : : : :
 :_ : :_ :
record_bits_in[0] ________/ __________________________/ ________________...
 : : : :
 : _: : _:
record_bits_in[1] ____________________/ __________________________/ ____...
 : : : :
 ___...
data_valid_in __/ : : : :
 : : : :

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 29(of 35)
2018-01-185.3.2 Inserting the record bits

The record bits are used when transferring the data to the host. Therefore, the bits have to be
present on the bus after the user logic block. This can either be solved by utilizing the
`BUS_PIPELINE` variable, or by inserting the record bits on the bus manually.

Using the `BUS_PIPELINE` variable
If the length of the output data from user logic is the same as the input length, it's
recommended to use the `BUS_PIPELINE` variable.

For example, if the record length is 1024 samples, and the latency of the custom logic is 10
cycles. Setting `BUS_PIPELINE=10` will delay the bus (and the record bits) by 10 cycles. This will
ensure that the record is framed properly by the record bits after the user logic block.

It is important to note that the `BUS_PIPELINE` delay will not be applied to signals inserted by
the user.

Inserting the record bits manually
If the length of the output differs from the input, only delaying the record bits will no longer
frame the data correctly, therefore the bits have to be inserted on the bus as well.

For example, if the input data is 1024 samples, and the output data is 128 samples the record
bits have to be generated to frame the new data. The `record_bits_in[0]` has to be asserted for
the first cycle of the record, and `record_bits_in[1]` has to be asserted for the last cycle of the
record. The data valid signal must also be asserted when both of the record bits are
asserted. The record bits are inserted with the bus macro

insert_record_bits_X(record_bits_out)

where X is the channel. For example, to insert the record bits for channel A

wire [1:0] record_bits_out;
 // ...
 insert_record_bits_a(record_bits_out)

Even when the record bits are inserted manually, it's important to set the `BUS_PIPELINE`
variable correctly. The other header information, e.g. the time stamp and trigger vector are
sampled on the record start bit. If the latency of the user logic block is unknown, the other
header fields have to be extracted and inserted as well. If the other header fields aren't of
interest this can be ignored. Data will still be received, however the header information will be
invalid.

5.4 Using sample-skipped data
When enabling sample-skip, data throughput will be reduced and the data_valid_in signal will
start to toggle to show which samples are to be used. This is only available in user_logic_2.
When data_valid_in == 1 it means that all parallel samples are to be used. Example below for
an -A unit (2 parallel samples) but same principle applies to all variants.

5.4.1 Example for an -A unit (2 parallel samples)

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 30(of 35)
2018-01-18

5.5 Debugging on real hardware with Vivado Debug Core.
There are different ways to add a Debug Core to the Vivado project. The procedure described
in here is just one of the many possible ways that can be used to debug your custom logic that
has been implemented with the ADQ Devkit on the real ADQ14 hardware.

When inserting your verilog code into the user_logic, you can mark the signals which you wish
to probe by using the debug macro. For example:

(* mark_debug = "true" *) wire test_signal

Once you are done with your custom code insertion, you can run the tcl command

devkit_synth_ul 1

and

devkit_synth_ul 2

This will create the netlists for both user_logic modules. After creating the netlist for both
user_logic modules, click on "Run Synthesis" and wait for Vivado to finish synthesizing the
whole design. Once it’s done, click on “Setup Debug” and follow the dialog screen to select the
signals to probe. At this stage, you should be presented with the signals that you already
marked for debug in your source code. Once you have confirmed your debug signals and the
Debug Core generation is completed, click on "generate bitstream" on the left hand panel. You
will be prompted to save the constrain file with the changes made by inserting the debug core.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 31(of 35)
2018-01-18Click yes and continue. Vivado will start generating a *.bit file containing the debug core. When

this process has finished, run the tcl command "devkit_mcs" to convert the *.bit file into an
*.mcs file. Open the folder "implementation\DevKit.runs\impl_1" and find the file named
"debug_nets.ltx". Save this file to another location to use with xilinx Hardware Manager later
when connecting the ADQ to the JTAG cable.

In summary, you should have 3 files in total:

1. adq14.bit

2. adq14.mcs

3. debug_nets.ltx

Both the *.bit file and *.mcs file are functionally copies of each other. But to avoid confusions
and mistakes please only use the adq14.mcs to upload to your device. The *.mcs file is not
volatile as the *.bit file and it will keep the debug core intact even after you have power-cycled
your device. Using the *.bit file will require you to re-upload the *.bit file again every single
time you reboot your device. There is also a risk of system failure when using the *.bit file if
your ADQ is connected via a P*Ie interface. Since uploading the *.bit file via the JTAG will reset
the FPGA abruptly, P*Ie connection will be lost in midair and cause system failure. These
behaviors are not specific to ADQ Devices. They are default behaviors and are common
knowledge.

Once you have uploaded the *.mcs file containing the debug core, follow these step to start
probing your debug signals.

1.) Depending on which clock signal you have chosen to be the master clock for your Debug
Core, you might need to initiate the FPGA to get that master clock running before Vivado
Hardware Manager can find the Debug Core on the ADQ14. If you have chosen the data clock
as the clock for your probe, the best way to initiate that clock is to simply start ADCapturelab
once and shut it down. That should be enough to initiate the clock for the Debug Core.

2.) Now start Vivado and click on Open Hardware Manager.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 32(of 35)
2018-01-18

3.) Click on Open Target and chose "Auto Connect".

4.) In the Trigger Setup window, click on "Specify probe file and refresh device".

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 33(of 35)
2018-01-18

5.) Browse to the file "debug_nets.ltx" which you have saved earlier and click on refresh. You
can now start probing your debug signals.

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 34(of 35)
2018-01-18

S

Document Number Revision Security class Date
16-1830 PD Open 2017-11-08

Author Printed

Teledyne SP Devices Page 35(of 35)
2018-01-185.6 Using VHDL instead of Verilog

All code in the DevKit is Verilog. However, Vivado lets you mix Verilog and VHDL code without
limitations, so you can choose to write your user code in VHDL.

Instantiate your VHDL module (see figure below – user_module_XXX.vhd) in the user logic code
(user_logic1.v or user_logic2.v) in Verilog-style, and then you can write the modules in any of
the languages you want. The tools will accept both Verilog and VHDL, the only important thing
is that the instantiation interface is correct and same as the implemented. The simulation tools
in Vivado will let you do mixed Verilog/VHDL simulation.

The top-level itself relies on macros (for the AXI bus extractions and insertions for instance) in
Verilog, so it cannot be altered to VHDL. But after extraction and before insertion you can for
instance pass on all ports (or the subset you need) to a submodule written in VHDL.

S

Figure 2: Hierarchy needed to use VHDL

	1 Tools
	2 Overview
	2.1 High-level block overview

	3 How to use the Development Kit
	3.1 Extracting the DevKit files
	3.2 Open the Development Kit
	3.3 Set up the project
	3.4 Build the firmware bitfile
	3.5 Working with your design
	3.6 Typical DevKit design flow

	4 Basic design with the Development Kit
	4.1 Dataflow chart
	4.2 Control bus
	4.2.1 Accessing the block control bus from the ADQAPI

	4.3 Data stream bus
	4.3.1 Concept of parallel samples (parallel design)
	4.3.2 Example of the bus splitter macro usage.
	4.3.3 Raw data sample order on Host PC
	4.3.4 Streaming Finite Amount Of Data to Host
	4.3.5 Trigger in User Logic 1
	4.3.6 Commonly used bus splitter functions
	4.3.7 GPIO (available in User Logic 2 only)

	4.4 Handling of the trigger vector

	5 Advanced design with the development kit
	5.1 Using DRAM
	5.1.1 The inner design of the Multiport DRAM
	Introduction
	Ports
	Command mux and port arbitration
	Command / data FIFO
	TAG fifo

	5.1.2 User interface
	Reader port (user interface in user_logic_2)
	Writer port (user interface in user_logic_2)

	5.1.3 Parameter READ_AFULL_DEPTH
	5.1.4 Other useful DRAM info

	5.2 Using GPIO on daughterboard
	5.2.1 Description
	5.2.2 Usage
	5.2.3 Connectors

	5.3 Using the record bits
	5.3.1 Extracting the record bits
	5.3.2 Inserting the record bits
	Using the `BUS_PIPELINE` variable
	Inserting the record bits manually

	5.4 Using sample-skipped data
	5.4.1 Example for an -A unit (2 parallel samples)

	5.5 Debugging on real hardware with Vivado Debug Core.
	5.6 Using VHDL instead of Verilog

